
Onboard Attitude Determination Software for iPhone

2012.02.06 (rev.1), 2014.01.20 (rev.2), 2017.06.26 (rev.3)
by Yosuke Fukushima, ISAS/JAXA Dept. Spacecraft Enginerring

contact e-mail address: fukushima@isas.jaxa.jp

1 Introduction
Today’s lecture is aiming to provide you with an experience of programming for an actual embedded system. The target
system is selected as iPhone/iPad, because it has several enviroment sensors, hi-performance CPU with large size RAM.
This specification is better and faster than those of standard 50Kg - 100Kg scale of small satelltes so far. Also, as iPhone
has become one of the most representative and familiar embedded system in daily life for most of people, it seems that
you may have chance to work with it in the way to your research activity in the future. The reason why Android phone is
not used here, is simply because this lecturer doesn’t have it. You can use Android smart phones for the same purpose.

Since you have taken lectures of spacecraft control, now is a suitable chance to bring those ideas into actual control
problems of satellite attitude. (Sakai-sensei, as far as I know, has given several lectures on these themes) Today’s lecture
is divided into two parts: brief lectures on attitude determination, which may be omitted you have known enought to
proceed this lecture, and excercises of software programming with minimum tutorials. Although materials used in this
lecture are easy to trace, you have much times to go through step by step to complete. In the end of each section of the
matrials you can find instructions to do. You are expected to write codes of functions in C language. After completing all
the excercises and gathering missing parts of programs, you would have a set of the attitude determination software to
run on an iPhone/iPad.

In most of remote systems, such as Spacecraft, UAV, AUV, Rovers, and etc..., have a set of sensors, actuators, and data
processors to perform their designed activities with/without human operator’s interventions. The data processing
structure can be illustrated as follows. In the next page, you can see MMX S/C and iPhone illustrated as
sensor-actuator-data Proccessing embedded systems. From this point of view, both are similar, and you can analogize
systems inside S/C once you have experienced working on iPhone.

図 1: Simplified data processing structure model of remote systems

If you have any question, you can ask it to the lecturer when you think it better to do so. Your intervetions are always
welcome. Note that you have been requested to bring your Laptop PC to edit the program source code files. If you have
any C comipler in your PC, you can work with most of excercise except the last one by yourself. If not, each time you
finish the excercise, you copy your files onto the lecturer’s PC and compile them on it. The resultant binary code for

1



target iPhone/iPad is generated on a MacBook, that is also used to download it to the iPhone/iPad. Those operation of
MacBook is performed by the lecturer.

図 2: MMX S/C and iPhone as embedded systems (https://jp.mathworks.com/hardware-support/iphone-sensor.html,
http://mmx.isas.jaxa.jp/en/index.html)

2



2 Attitude Representation
2.1 Reference frame and body-fixed frame

Attitude of an object is expressed as a coordinate transformation from a reference frame, which is usuall an inertial frame
{i}, to an body-fixed frame, {b}, where {e} is vector array expression of a triplet of mutually orthogonal unit vectors as
e1, e2, e3. There are two major ways of attitude represetation: Direction Cosine Matrix(DCM) and Queternion.

A vector a can be expressed in many framaes. For example, let a be expressed in an inerital frame {i} and a body-fixed
frame {b} as

{b}T[a′] = {i}T [a], (1)

where [a] = [a1, a2, a3]T , {b}.{b}T = diag(1, 1, 1), [a′] = [a′1, a
′
2, a
′
3]T , and {i}.{i}T = diag(1, 1, 1).

If the attitude of the object is expressed by C, we can get the following equation.

{b} = C{i}. (2)

So we can obtain

C = {b}.{i}T = C{i}.{i}T , (3)

where C is called DCM and expressed as

C =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b1 · i1 b1 · i2 b1 · i3
b2 · i1 b2 · i2 b2 · i3
b3 · i1 b3 · i2 b3 · i3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(4)

The components of DCM are inner product of corresponding vector basis of each frame, illustred as follows.

図 3: Vector array expression and DCM components

3



2.2 Conversion operation from DCM to Q and vice versa

We have another way to express the attitude: using quaternions (or Euler parameters). Quaternion is derived from a
different point of view from that we have when we think about attitude. The definition is that an attitude can be
expressed by a simple rotation with respect to an axis from any reference frame. This definition is a theorem found by
Euler, and mathemetically formulated by Euler, Gauss, and Hamilton(Quaternion is forumulated by Halmiton).

If you notate the direction axis of rotation and its angle as λ, θ, respectively, quaterion, q = (q1, q2, q3, q4), is as follows:

q1 = λ1 sin(θ/2), q2 = λ2 sin(θ/2), q3 = λ3 sin(θ/2), q4 = cos(θ/2) (5)

We have one constraint on quoternion as,

q2
1 + q2

2 + q3
3 + q4

4 = 1. (6)

If a DCM C indicates the same orientation as q, there is a equation of trasnformation between two:

C =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

q2
1 − q2

2 − q2
3 + q2

4 2(q1q2 + q3q4) 2(q1q3 − q2q4)
2(q2q1 − q3q4) q2

2 − q2
3 − q2

1 + q2
4 2(q2q3 + q1q4)

2(q3q1 + q2q4) 2(q3q2 − q1q4) q2
3 − q2

1 − q2
2 + q2

4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(7)

I’m not going through the characteristics of quaternion father now. The only thing you should remember is that the
quaternions is equivalent for the DCM, and they can be converted mathematically each other.

Now you are requested to work the follwing three excersise as instruected.

2.2.1 [excercise] q to DCM

Complete the function q2dcm in the file named step1.c. There are some information on this transformation in the
appendix.

int q2dcm(double c[3*3], double q[4]);

2.2.2 [excercise] additive operation

Complete the function qadd in the file named step1.c. There are some information on this operation in the appendix.

int qadd(double ans[q], double q[4], double dq[4]);

2.2.3 [excercise] DCM to q

Complete the function dcm2q in the file named step1.c. There are some information on this transformation in the
appndix.

int dcm2q(double q[4], double c[3*3]);

3 Vector Operation Functions
To get familar with the programming of vector operations in C, write the following fuctions. Some are partially written,
so you should complete all the functions. Those functions will be used as important subsystems of the today’s goal.

4



3.1 [excercise] copy

Complete the function copy3 and copy4 in the file named step2.c. These functions copy the 2nd argument into 1st
argument.

void copy3(double ans[3], double v[3]); void copy4(double ans[4], double v[4]);

3.2 [excercise] norm

Complete the function norm and norm3 in the file named step2.c. These functions return the norm-2 values of the
argument 3x1 array and 4x1 array.

double norm3(double v[3]); double norm4(double v[4]);

3.3 [excercise] normalize

Complete the function normalize3 and normalize4 in the file named step2.c. These fuctions modify the argument of
3x1 array into a unit vector and return the norm of the argument vector.

double normalize3(double v[3]); double normalize4(double v[4]);

3.4 [excercise] dot

Complete the function dot in the file named step2.c. This function returns the dot-proct value of 2 3x1 arrays.

double dot3(double u[3], double v[3]);

3.5 [excercise] cross

Complete the function cross in the file named step2.c. This functions set the first argument of 3x1 array by the
cross-proct of the 2nd and 3rd argument of 3x1 array. The return values are norm values of the cross-proct vectors.

double cross3(double ans[3], double u[3], double v[3]);

3.6 [excercise] mul

Complete the function mult in the file named step2.c. This function set the frist argument of 3*3 array by the product of
the 2nd and the 3rd agument of 3*3 array.

void mul33(double ans[3*3], double a[3*3], double b[3*3]);

3.7 [excercise] tr

Complete the function tr in the file named step2.c. This function modifies the argument of 3*3 array by the transposed
matrix of it.

void tr33(doub m[3*3]);

5



4 Simple Attitude Determination Algorithm
4.1 TRIAD

One of the easy-to-implement algorithms of attitude detemination is “TRIAD”. TRIADI is easy to understand, simple,
deterministic and straight-forward, so that there is no difficaulty to implement even when we use a standard
programming language, such as C.

With a set of two non-coaxial (non parallel) vectors that are expressed both in the reference and body-fixed frames, the
attitude (pose) of the object, with respect to the reference frame, can be expressed. Let us think two vectors G and M,
expressed in both {b} and {i} as

g = G
|G| = {b}

T [g′] = {i}T [g] (8)

m = M
|M| = {b}

T [m′] = {i}T [m]. (9)

Normalized two vectors, g and m, are not in pararallel, the third vector, s, can be calculated by the cross-product
operation as

s = 1
sin(θ)

(g ×m), (10)

where θ is the angle between g and m.
Also, we can obtain t by

t = g × s. (11)

By applying the vector ii from the left sides of g, s, t, we have the following equations:

i1 · g = i1 · {b}T [g′] = g1 (12)

i2 · g = i2 · {b}T [g′] = g2 (13)

i3 · g = i3 · {b}T [g′] = g3 (14)

i1 · s = i1 · {b}T [s′] = s1 (15)

i2 · s = i2 · {b}T [s′] = s2 (16)

i3 · s = i3 · {b}T [s′] = s3 (17)

i1 · t = i1 · {b}T [t′] = t1 (18)

i2 · t = i2 · {b}T [t′] = t2 (19)

i3 · t = i3 · {b}T [t′] = t3. (20)

Above equations are identical to the conponets of DCM between two frames expressed as

{b} = C{i}. (21)

The following figure illustrates relations between those components and two frames.

6



図 4: Inner Product of two vectors selected from two reference frames

Composing all relations between vectors as a matrix, we can derive a DCM as,

[[g][s][t]] = {i} · {b}T [[g′][s′][t′]] = {i} · {i}T CT [[g′][s′][t′]] = CT [[g′][s′][t′]], (22)

which results
[[g][s][t]] = CT [[g′][s′][t′]], (23)

or

C = [[[g][s][t]][[g′][s′][t′]]−1]T

= [[[g][s][t]][[g′][s′][t′]]T ]T .
(24)

Note that the transpose matrix of orthogonal matrix is identical to the inverse matrix of it. Once we obtained C, its
corresponding quaternion can be obtained by the format converstion operation developed in section 2.

4.2 [execercise] triad

After understanding the path of developping of all the equations above, complete the function ’triad’ in the file step3.c.
This function sets the frist argument of 4x1 array through the sequence of operations using the the 2nd to 5th aguments
of 3x1 arrays and returns the angle between two vectors in radian.

double triad(double q[4], double Gdash[3], double Mdash[3], double G[3], double M[3]);

5 Vector Observation
With four vectors, two in a reference frame and two in a body-fixed frame, we can determine the attitude of any object by
in DCM or quaternion. In actual satellite cases, these are two observation vecotors and two are theoritical vectors. An

7



typical set is a couple of Sun direction and Geomagnetic field direction, which are frequently used in corse accuracy
attitude estimation since theoritical calculation using well-known models can be done onboard.

However, iPhones have no Sun sensor, we have to use another vector. In this lecture, we use the gravity direction vector.
With one gravity vector (or accelemeter measure) as G and one magnetic field vector as M, we can determine the attitude
of the iPhone.

図 5: Two vectors for TRIAD are selected as the geomagnetic field vector and the gravity vector

The next figure shows the data flow from incoming source of sensors into the data processor. Once after we have obtain
updated data set of gravity and magnetic field vector, we are to calculate the correspoing theoritical vectors in the
referece frame, and then put those four vectors into the TRIAD logic to obtain its DCM or quaternion. The update cycle
is depends on the sensor-update-cycle and the computational peformance of the onboard processor we use.

図 6: Data flow from source sensors to attitude data calculation processor

[excercise] check the observation vector handling
Before proceeding to the excercise using an actual system, we should check our software programning result by running
it on a debug system. In the step4.c, there is a skeleton of TRIAD software, and you can complete the code by adding
and modifying it using functions you have completed. After that, you can compile and run it to see the result on the
reference PC. The dummy sensor data are stored in the following variables. There are fixed values.

double obs g[3], obs m[3], ref g[3], ref m[3];

8



6 iPhone Attitude Determination
After going through the section 1 to 4, you are now ready to upload your own code of attitude determination subsystem to
an iPhone. The target iPhone is the lecture’s, which has been registered to accept user-developed program just for testing.

Please copy all the files you have completed, step1.c, step2.c step3.c and step4.c onto the USB-memory device. Althoug
the souce code can be used in several systems such as Windows, Linux, and Mac, you have to compile them using Xcode
on MacOS to get the executable code for iPhones.

The downloading procedure will be done on the lecturer’s MacBook and uploaded from it. After uploading, you have to
check the software of attitude determination system of the iPhone by your self.

The sequece of operation is shown here:

1. upload the code

2. flick the badge “AttDet” to start the program

3. select “GPS postion” to activate the GPS sensor

4. select “G Gravitaion” to activate the G sensor (g vector)

5. select “Mag field” to activate the M sensor (m vector)

6. select “TRIAD” to start the attitude determination

7. take data of q by making it facing in several directions.

That’s it.

9






